Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(39): 25029-25035, 2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33043180

RESUMO

Fusicoccin A (FC) is a fungal phytotoxin that stabilizes protein-protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. Recently, FC has emerged as an important chemical probe of human 14-3-3 PPIs involved in cancer and neurobiology. These previous studies have established the structural requirements for FC-induced stabilization of 14-3-3·client phosphoprotein complexes; however, the effect of 14-3-3 isoforms on FC activity remains underexplored. This is a relevant question for the continued development of FC variants because there are seven isoforms of 14-3-3 in humans. Despite their sequence and structural similarities, a growing body of experimental evidence supports both tissue-specific expression of 14-3-3 isoforms and isoform-specific functions in vivo. Herein, we interrogate the isoform-specificity profile of FC in vitro using recombinant 14-3-3 isoforms and a library of fluorescein-labeled hexaphosphopeptides mimicking the C-terminal recognition domains of client proteins that are characterized targets of FC in vivo. Our results reveal modest isoform preferences for individual client phospholigands and demonstrate that FC differentially stabilizes PPIs involving 14-3-3σ. Together, these data support the feasibility of developing FC variants with enhanced isoform selectivity.

2.
ACS Chem Biol ; 15(2): 305-310, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31971771

RESUMO

Fusicoccin A (FC) is a diterpene glycoside that stabilizes protein-protein interactions (PPIs) between 14-3-3 adapter proteins and their phosphoprotein interaction partners. Recently, FC has gained attention for its pro-apoptotic and neuroprotective properties in cell culture. Although the exact molecular mechanism(s) is (are) unresolved, 14-3-3 PPIs are central to this activity. With the goal of refining the pharmacology of this chemotype, we conducted a systematic analysis of the structural features that govern FC-induced stabilization of 14-3-3 PPIs utilizing a C-terminal phosphorylation recognition motif. This study confirmed that a C-terminal amino acid with a small alkyl group is required for the interaction of FC at canonical C-terminal 14-3-3 PPI interfaces. Using bioinformatics, this structural insight was leveraged to assemble a database of 119 candidate 14-3-3 PPIs that can serve as targets for FC. This group includes a subset of proteins with experimentally determined C-terminal phosphosites that have not been explored as potential targets of FC.


Assuntos
Proteínas 14-3-3/metabolismo , Exorribonucleases/metabolismo , Glicosídeos/metabolismo , Fosfopeptídeos/metabolismo , Proteínas 14-3-3/química , Sítios de Ligação , Biologia Computacional , Exorribonucleases/química , Humanos , Biblioteca de Peptídeos , Ligação Proteica
3.
Chem Sci ; 9(24): 5389-5393, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-30009010

RESUMO

A 5-8-5 carbocyclic ring system forms the core of over 30 distinct natural products. Several members of this family have gained attention for their diverse activity in cell culture. In these cases, biological function is mediated by the arrangement of substituents around a conserved 5-8-5 nucleus. Despite the potential applications of this privileged substructure in medicinal chemistry, modular strategies for its assembly are underdeveloped. Herein, we describe a cycloisomerization reaction that forms the 5-8-5 framework directly. This strategy uniquely allows access to gram quantities of this valuable scaffold in four steps.

4.
Proc Natl Acad Sci U S A ; 112(28): 8667-71, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26069208

RESUMO

Infectious diseases of humans, wildlife, and domesticated species are increasing worldwide, driving the need to understand the mechanisms that shape outbreaks. Simultaneously, human activities are drastically reducing biodiversity. These concurrent patterns have prompted repeated suggestions that biodiversity and disease are linked. For example, the dilution effect hypothesis posits that these patterns are causally related; diverse host communities inhibit the spread of parasites via several mechanisms, such as by regulating populations of susceptible hosts or interfering with parasite transmission. However, the generality of the dilution effect hypothesis remains controversial, especially for zoonotic diseases of humans. Here we provide broad evidence that host diversity inhibits parasite abundance using a meta-analysis of 202 effect sizes on 61 parasite species. The magnitude of these effects was independent of host density, study design, and type and specialization of parasites, indicating that dilution was robust across all ecological contexts examined. However, the magnitude of dilution was more closely related to the frequency, rather than density, of focal host species. Importantly, observational studies overwhelmingly documented dilution effects, and there was also significant evidence for dilution effects of zoonotic parasites of humans. Thus, dilution effects occur commonly in nature, and they may modulate human disease risk. A second analysis identified similar effects of diversity in plant-herbivore systems. Thus, although there can be exceptions, our results indicate that biodiversity generally decreases parasitism and herbivory. Consequently, anthropogenic declines in biodiversity could increase human and wildlife diseases and decrease crop and forest production.


Assuntos
Biodiversidade , Doenças Parasitárias/prevenção & controle , Animais , Suscetibilidade a Doenças , Interações Hospedeiro-Parasita , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...